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Near resonance sloshing in containers, filled with a liquid to a given depth h, depends
on three parameters, which are the viscous damping, the frequency offset that contains
the forcing amplitude and the fluid depth. Experiments have been conducted with
low-viscosity liquids mainly in circular cylindrical containers of radius R subjected to
harmonic horizontal forcing; complementary experiments on wave breaking have been
performed in a square-base container. The fluid depth was kept large (h/R > 1) so that
it was no longer a variable parameter. The bounds of existence of the different wave
regimes, namely planar waves, swirling waves, chaotic sloshing as well as breaking
waves, have been determined as a function of forcing frequencies relative to the lowest
natural frequency ω1 and for a wide range of forcing amplitudes. It is shown that
when the forcing frequency ω is slightly larger than the lowest natural frequency ω1,
planar wave motion bifurcates to a swirling wave mode at finite wave amplitude, the
value of which depends on the offset parameter. The swirl wave amplitude grows
exponentially and saturates at a certain value. The swirl has a hard-spring behaviour,
is very robust and can generate a vortical flow of the liquid column. Chaotic sloshing
and wave breaking occur quasi-periodically: growth of planar wave amplitude at a
rate depending on the forcing amplitude, collapse, irregular swirl and again growth
of planar wave amplitude. The details and periodicity of the chaotic behaviour and
breaking depend on the frequency-offset parameter. Close to the natural frequency,
chaotic wave motion is possible without breaking. Planar wave breaking is, in general,
associated with spilling caused by the encounter of nearly freely falling lumps of fluid
with the upward moving wave crest, in a way demonstrated previously in two-
dimensional wave breaking. In three dimensions, the wave crest is destabilized in
the crosswise direction so that spilling is not uniform along the wave crest and an
irregular swirl is generated following breaking; free fall of fluid lumps occurs over
many wave periods. The complementary experiments, performed in a square-base
container of base dimension L, show four different wave patterns of wavelengths L

and L/2 crosswise to the primary wave. This cross-wave instability is interpreted in
terms of parametric instability.

1. Introduction
Liquid sloshing in storage tanks is a fundamental problem, related to nonlinear

oscillators and dynamic systems (Miles 1984b; Bridges 1987; Funakoshi & Inoue
1988). It is also of considerable practical importance as it can lead to accidents due

† Present address: IFP Lyon, BP 31, 69390 Vernaison, France.



468 A. Royon-Lebeaud, E. J. Hopfinger and A. Cartellier

to the forces exerted on the container walls and possible large pressure changes due
to evaporation or condensation. Ibrahim (2005) gives a detailed summary of the
theory and fundamentals of sloshing under widely different conditions, and contains
approximately three thousand references. Abramson in his foreword to this book
mentions that nonlinear sloshing can be bewildering in its complexity. During the
early development of space flights, liquid sloshing in fuel tanks received considerable
attention (Abramson 1966). The sloshing wave modes have been analysed in detail
for containers of various geometries, including nonlinear sloshing and geometric
effects on the damping of the liquid motion. Most of the time the containers are
subjected to lateral forcing, giving rise to asymmetric gravity wave motions. Vertical
forcing, parallel to the container axis, is also encountered which generates symmetric
or asymmetric wave modes (depending on forcing frequency) known as parametric
or Faraday instability. In a circular cylindrical container, as well as in square-base
containers, large-amplitude asymmetric waves bifurcate to a swirling wave motion
at forcing frequencies near and above the natural frequency depending on forcing
amplitude (Abramson, Chu & Dodge 1966; Miles 1984b; Faltinsen, Rognebakke
& Timokha 2003, 2005). Furthermore, the fluid depth is an important parameter
because resonant waves have a negative or positive nonlinearity, depending on the
liquid fill ratio (Miles 1984a; Waterhouse 1994; Faltinsen et al. 2003). In square-base
containers and at small fluid depths, secondary frequency bifurcations are possible
(Bridges 1987). The modal theory developed by Faltinsen et al. (2000, 2003, 2006)
and applied to rectangular and square-base containers is very powerful and allows
the calculation of the stability limits of stable nonlinear waves for different fill ratios
as well as the forces and moments exerted on the tank walls. Hutton (1963) used a
Taylor expansion of the surface displacement and Miles (1976, 1984b) developed a
Lagrangian–Hamiltonian formulation to treat weakly nonlinear sloshing in circular
cylinders.

Experimentally, different aspects of sloshing have been considered. Hutton (1963)
compared his theoretical stability boundaries with experiments. The predicted results
were found to agree well with experiments for planar waves, but poorly for swirling
waves. The most detailed experiments, giving the bounds of the different wave regimes,
are those of Abramson et al. (1966). However, these experiments also raise questions
about the domain of existence of a swirling wave mode. Furthermore, Hutton (1964)
and Faller (1983, 2001) demonstrated that large-amplitude swirling waves generate
a vortical flow of the liquid column that enlarges the frequency range of existence
of this wave mode owing to a Doppler shift. Funakoshi & Inoue (1988) examined
the transitions from planar waves to chaos and swirling waves in terms of dynamical
systems theory.

Little is known about the three-dimensional wave-breaking conditions of standing
waves. Jiang, Perlin & Schultz (1998) showed a period tripling scenario of two-
dimensional standing-wave breaking. Experiments on wave breaking by Bredmose
et al. (2003) in a rectangular tank of length to width equal to 3.7, subjected to
horizontal forcing, showed the existence of table-top breakers with relatively long
periods of free fall. These experiments give some guidance for fully three-dimensional
breaking in cylindrical and square-base containers, but there are important differences,
essentially because of the existence of two conjugate wave modes. Taylor (1953)
discusses three-dimensional breaking of standing waves in a rectangular container and
some experimental results on breaking of waves in a square-base container are presen-
ted by Faltinsen et al. (2003). Capillary wave breaking described by James, Smith
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& Glezer (2003) is also encountered in the final stage of breaking when ligaments
form.

Here we present new experimental results on large-amplitude sloshing and wave
breaking in circular cylindrical containers. In order to illustrate more clearly the basic
three-dimensional wave-breaking scenarios, complementary experiments have been
conducted in a square-base container. Image analysis and local measurements (by
capacitance probes) of the wave amplitude were used to determine the steady-state
wave motions as well as the transients and chaos up to breaking and beyond. The
effect of viscous damping is very small in the sense of Miles (1984b). In § 2, some
useful theoretical concepts, with emphasis on Miles’ (1984b) weakly nonlinear theory,
are presented. Section 3 contains a description of the experimental configuration
and procedures. In § 4, the different steady-state wave regimes (amplitude response
curves) are discussed, and § 5 contains the bifurcations and transients. Chaos and
resonant breaking conditions are presented in § 6, and in § 7 planar wave breaking in
a square-base container is illustrated. Concluding discussions are presented in § 8.

2. Theoretical background
2.1. Normal modes

The wave motion of an inviscid incompressible fluid in a rigid tank is governed by the
free-boundary potential flow equations presented in a large number of publications
(see for instance Abramson 1966; Faltinsen et al. 2003; Ibrahim 2005). For a circular
cylinder, the velocity potential of the free-boundary fluid motion relative to the
container satisfies the (linear) Laplace equation. Its solution is of the form (Ibrahim
2005):

φ(r, θ, z, t) = [αmn(t) cosmθ + βmn(t) sin mθ]Jm(kmnr)
cosh(kmn(z + h)

cosh(kmnh)

(m = 0, 1, . . . , n = 1, 2, . . .), (1)

where z is measured upward from the undisturbed free surface in the cylindrical
polar coordinate system (θ, r, z), h is the fluid depth, Jm(kmnr) a Bessel function and
αmn(t) and βmn(t) are time-dependent coefficients which can be expressed in terms
of harmonic functions sin ωmnt . The free-surface elevation and natural frequency are,
respectively, obtained from the linearized free-surface boundary condition φ̇ − gη =0
and from φ̈ + g∂φ/∂z =0. The free-surface elevation reads:

η(r, θ, t) = [Amncos mθ + Bmnsinmθ]Jm(kmnr) cosωmnt (m = 0, 1, . . . , n = 1, 2 . . .), (2)

where Amn and Bmn contain gravity g. The natural frequency, when adding surface
tension, is:

ω2
mn = gkmn

(
1 +

k2
mnσ

gρ

)
tanh(kmnh). (3)

The boundary condition on the container wall is ∂φ/∂r |r=R = J ′
m(kmnR) = 0 which

gives for the axisymmetric modes, up to n= 2, k01R = 3.832 and k02R = 7.015 and
for the asymmetric modes k11R = 1.841 and k12R = 5.335. The corresponding natural
frequencies are given by (3). The two dominant asymmetric modes of free-surface
oscillation of wavenumber k11R = 1.841, have thus the same frequency ω11 ≡ ω1 and,
according to (2), differ only by an azimuthal rotation π/2. These two dominant modes
are linearly orthogonal, but are coupled at third order in wave amplitude.
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Viscous effects have been neglected in the foregoing theoretical development. The
natural frequency shift due to linear damping is ω̂mn = ωmn(1−δ) where δ = κ/ωmn is the
damping ratio and κ the damping rate. In general, there is viscous dissipation in the
Stokes boundary layers and in the bulk. The respective contributions are (Lighthill
1978) δ ∼ (1/R)(ν/2ωmn)

1/2 + (1/R2)(2ν/ωmn). The weighting factors depend on the
wave modes. For low viscosity fluids (small ν) and sufficiently large containers, the
bulk dissipation is an order of magnitude smaller than dissipation at the boundaries
(Miles & Henderson 1998). For dissipation at the boundaries, Henderson & Miles
(1990) give the following analytical expression:

δ =
1

2R

(
ν

2ωmn

)1/2[
2kmnR

sinh 2kmnh
+

2kmnR cosh2 kmnh

sinh 2kmnh
+

1 + (m/kmnR)2

1 − (m/kmnR)2
− 2kmnh

sinh 2kmnh

]
.

(4)

The first and second terms in square brackets represent damping at the bottom and at
the free surface and the last two terms correspond to damping at the side boundaries.
For deep water and a free surface without rigidity, this expression reduces to

δ =
1

2R

(
ν

2ωmn

)1/2
1 + (m/kmnR)2

1 − (m/kmnR)2
. (5)

Using the dispersion relation (3) and neglecting surface tension terms, (5) can be
written in the form

δ = C1(ν
2/R3g)1/4, (6)

where the coefficient C1 is a function of the wave mode as indicated by (5). For
the lowest asymmetric mode, k11R = 1.841, experiments give 0.8 � C1 � 1.4 (Silverman
& Abramson 1966; Royon-Lebeaud 2005). This is a factor of about 2 larger than
predicted by (5). A similar difference between theoretical and experimental damping
ratios has been observed by Henderson & Miles (1990) for other wave modes.

2.2. Weakly nonlinear theories

Hutton (1963) developed the velocity potential and free-surface displacement to third
order for nonlinear waves in a circular cylinder subjected to horizontal harmonic
forcing. He was able to establish the third-order coupling between the primary modes
and show that planar resonant wave motion is unstable in a certain neighbourhood of
the natural frequency and that the nonlinearly coupled motion, causing swirl, is stable.
Miles (1976) established the Lagrangian and Hamiltonian for nonlinear gravity-wave
motion in a rectangular container in terms of generalized coordinates of the free-
surface displacement. Miles (1984a) extended this formulation to weakly nonlinear
free sloshing in a circular cylinder and then (Miles 1984b) to weakly nonlinear surface
wave motions when the container is subjected to horizontal harmonic forcing near
the resonance frequency of the primary modes. It is useful to summarize this theory
because it contains the relevant control parameters, gives the amplitude response curve
with the bifurcation points and provides physical insight into the amplitude-frequency
response. Miles (1984b) poses

η(r, θ, t) = ηn(t)ψn(r, θ) (n = 1, 2, . . .), (7)

where ηn(t) are generalized coordinates and ψn(r, θ) are the normal modes given by

ψn ≡ ψc,s
mn =

Jm(kmnr)

Nmn

(cosmθ, sinmθ) (m = 0, 1, . . . , n = 1, 2, . . .), (8)
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where N2
mn =[1 − (m/kmnR)2]J 2

m(kmnR)/2. In this notation, the two normal primary
modes of wave number k11 ≡ k1 are given by

ψ1,2 ≡ ψc,s
11 = N−1J1(k1r)(cos θ, sin θ), (9)

where N ≡ N11 = 0.345 and superscripts c, s stand for cos θ and sin θ . When the
container is forced horizontally by the x-directed (in the θ = 0 plane) displacement
x = Af cosωt , the external force potential to be included in the Lagrangian is of the
form ω2Af x1η1, where x1 = 0.4986R when ω is near the dominant modes m = n= 1.
The Lagrangian, truncated at fourth order in ηn(t), has general solutions of the form:

ηn = ε� {pn(τ ) cos ωt + qn(τ ) sin ωt} (n = 1, 2), (10)

for the two primary modes and

ηn = ε2� {An(τ ) cos 2ωt + Bn(τ ) sin 2ωt + Cn(τ )} (n �= 1, 2), (11)

for the secondary modes. For planar waves, p2 = q2 = 0, whereas the surface
displacement of non-planar waves is composed of amplitudes of subscript n= 1 and
2. The coefficients pn, qn, An, Bn and Cn are slowly varying dimensionless amplitudes
which depend on the slow, dimensionless time scale τ = (ε2ω t)/2. The parameters in
equations (10) and (11) are:

� =
R

1.841
tanh(1.841h/R), ε3 = 1.684

Af

R
, (12)

where ε is a small parameter, 0<ε � 1. Consistency of the Lagrangian, truncated
at fourth-order, requires that all the terms are O(ε4). Therefore, the forcing term
F1 ∝ Af ω2 = O(ε3), quadratic terms in η1 and η2, that force non-resonant secondary
modes, are O(ε2) and frequency offset ω2−ω2

1 = O(ε2ω2
1). This introduces the frequency

offset parameter in the form

β =
ω2 − ω2

1

ε2ω2
1

. (13)

Substitution of (10) and (11) into the expression of the Lagrangian and averaging
over a 2π interval of ωt leads to the average Lagrangian which contains a constant of
the motion, namely the Hamiltonian H . The canonical equations give the evolution
equations of the amplitudes of the primary modes ṗn and q̇n where overdots represent
differentiation with respect to τ . Linear damping can be added to the canonical
equations in the form −α(pn, qn) where

α = 2δ/ε2, (14)

and δ the damping ratio (6). Weakly nonlinear wave motion is, therefore, governed by
four evolution equations (ODE) of ṗ1, q̇1, ṗ2, q̇2 containing three control parameters,
α, β and � (i.e. h/R). The fixed points (steady-state resonance curves) and bifurcation
points where the number of fixed points changes, are obtained from the steady-state
solutions of these equations. For small α there are five bifurcation points βi , i = 1, 2,
3, 4, 5 (or 6), the values of which depend on h/R through the parameters A and B

determined by Miles (1984a).
Miles (1984b) and Funakoshi & Inoue (1988) studied in detail this dynamic system

of four ordinary differential equations (ODE) with three control parameters. The
bifurcation points β1 and β2 are shown to be Hopf bifurcation points, but when
α2 � 1, only β2 exists. The resonantly forced spherical pendulum (Miles 1984c)
corresponds to particular values of A and B . If secondary modes were not excited at
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second order in η1 and η2, weakly nonlinear sloshing would be fully analogous to the
motion of a spherical pendulum. In deep water, the contribution of the two primary
modes represents about 65 % of the kinetic energy (Gavrilyuk, Lukovsky & Timokha
2000). These authors solved numerically a five-mode (two primary modes and three
secondary modes) model equation for sloshing in a circular cylinder subjected to
harmonic horizontal forcing.

Of interest also are the amplitude corrections of the resonance frequency in terms
of the parameters A and B (Miles 1984a). The expression for planar waves is of the
form

ω

ω1

= 1 − 1
2
A

η2

�2
, (15)

where η2 is the mean square of the free-surface displacement. The sign and magnitude
of the parameter A changes with liquid depth. For a deep fluid layer, h/R � 1, A is
positive (A= 1.11) and the first asymmetric mode has a negative nonlinearity (soft
spring behaviour). This means that resonance of the nonlinear system is observed at
a frequency lower than the linear natural frequency of the first natural mode. Taylor
(1953), in his experiments with standing waves, clearly demonstrated this negative
nonlinearity. A changes sign at h/R =0.506 and goes to minus infinity at h/R =0.15.
Non-planar waves have the same natural frequency ω1 and the weakly nonlinear
resonance frequency is:

ω

ω1

= 1 − 1
2
(A + B)

η2

�2
, (16)

where A + B is always negative and A + B = −0.42 when h/R � 1. The swirling
waves have, therefore, a positive nonlinearity at all fluid depths. This behaviour is
confirmed by the fully nonlinear multimodal theory of Faltinsen et al. (2003) applied
to a square-base container.

2.3. Multimodal theory

The small-dimensional modal models using only the generalized coordinate ηn(t) and
five modes, as discussed above, do not allow calculating hydrodynamic forces on the
tank wall nor fluid–structure interactions or take into account more complex forcing
where transient effects are of importance. The multidimensional model system, as
developed by Faltinsen et al. (2000) and others, is capable of treating such complex
sloshing and includes intermediate fluid depths where secondary modes become more
important. The limitations of the model are that the tank walls must be smooth,
vertical and cylindrical. Overturning waves are excluded. The multimodal model is
based on a generalized Fourier series representation of the surface elevation in the
form of (7) and of the velocity potential, namely

η(x, y, t) = ηn(t)ψn(x, y), φ(x, y, z, t) = Ri(t)ϕi(x, y, z), (17)

where repeated indices represent summation as above. ψn(x, y) are a complete set of
orthogonal functions and ϕi(x, y, z) a family of harmonic functions. The generalized
coordinates ηn(t) and Ri(t) are determined by the modal system (coupled system
of nonlinear ODE) derived from the free-boundary problem using a variational
technique. Faltinsen et al. (2003, 2005) treated sloshing in a square-base container
retaining nine modal functions.
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Figure 1. (a) Experimental set-up. (b) Fourier analysis of the excitation signal
for Af /R = 0.023.

3. Experimental set-up
The sloshing experiments were conducted in circular cylindrical containers, one of

diameter d = 2R = 300 ± 4 mm and 60 cm deep, made of Plexiglas and the other
of diameter d = 156 ± 0.6mm and 25 cm deep, made of Pyrex. The natural periods
of the lowest asymmetric modes are, respectively, T1 = 2π/ω1 = 572 ms and 413 ms.
Complementary experiments on wave breaking were conducted in a square-base glass
container of base L = 280±0.5 mm and 50 cm in depth of natural period T1 = 599 ms.
These containers, filled with water or alcohol to the desired depth h, were mounted
on an oscillating table. In the present experiments, the fill ratio was always h/R > 1.2
(generally 1.5) satisfying deep-water conditions (tanh(k1h) > 0.976 in the dispersion
relation). The water used was tap water; distilled water was also used and no
difference in the sloshing behaviour was noticed. Alcohol has a kinematic viscosity
ν = 0.0148 cm2 s−1 at 20 ◦C and a surface tension σ = 22.3 dyn cm−1 and this also had
no effect on the wave motion (the Bond number Bo = ρgR2/σ > 800). Only the sizes
of drops and bubbles produced by breaking are smaller.

The oscillating table is driven by a linear motor with electro-magnetic control
(Rexroth INDRAMAT), equipped with an optical precision displacement ruler
(Heidenhain). The range of the excitation parameters used was 0.5 � f � 5 Hz and
0.05 � Af � 5 mm. The frequency and amplitude were measured with an optical
displacement probe. The error in frequency is less than 0.005 Hz with fluctuations
lower than 0.002 Hz (error < 0.3 % of nominal frequency). In each experiment, the
signal of the optical displacement meter was sampled at a frequency of 30 Hz and this
increased the error in frequency to < 1 %. The fluctuations in excitation amplitude
were less than 3 % in the frequency range of the present experiments. Figure 1(a)
shows a schematic representation of the experimental configuration with the forcing
power spectrum given in figure 1(b).

The wave amplitude was measured with capacitance probes that were calibrated
before and after each experiment and have a resolution of 0.2 mm. These probes were
positioned at about 1/8 of the radius from the tank wall (4 mm for the reservoir of
radius R =78 mm and 13 mm for the reservoir of radius R = 150 mm) and along a
line parallel to the tank movement (θ =0 ◦, position P1) and perpendicular (θ = 90 ◦,
position P2) to the direction of the tank movement. The probe at P2 indicated
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Figure 2. Amplitude–frequency diagram for four different forcing amplitudes Af /R: �,
planar wave mode 1; �, swirling wave mode for Af /R = 0.0266; �, �, Af /R = 0.0133; �,
�, Af /R = 0.0066; �, �, Af /R = 0.0033. A stable swirling wave (dotted region) exists between
the filled symbols and chaos to the left of it (hatched region). The dotted branches are the
bounds of swirl of Abramson et al. (1966). The upper horizontal line indicates bω2 = g, giving
b/λ= 0.16 (λ= 3.411R). The container, filled with water to h/R ≈ 1.5, has a radius R = 78 mm.

whether or not a swirling wave component was present. The shape of the liquid
surface was obtained by visualizations using backlighting and image analysis.

4. Frequency domain of steady-state regimes
4.1. Amplitude response curves

Figure 2 shows the wave amplitude response b = η(R, θ, nT ), at θ = 0 ◦ (P1)
and θ =90 ◦ (P2) made dimensionless by the wavelength λ, as a function of
dimensionless frequency ω/ω1 for four forcing amplitudes Af /R. All experimental
points correspond to steady-state wave motions. The open symbols indicate planar
waves and the closed symbols swirling waves. The wave amplitude is here scaled
by the wavelength, λ ≡ λ1 = 3.411R, because this allows a comparison with the
wave-amplitude response curve of a square-base container for instance and gives
the wave steepness directly. The amplitude response curves show clearly that the
limits of existence of steady-state planar waves depend on both the forcing frequency
and amplitude related by the frequency-offset parameter β = (ω2 − ω2

1)/ε
2ω2

1. The
corresponding frequency domain of existence of the swirling wave mode and of
chaos increases with forcing amplitude as expressed by β . For the four dimensionless
forcing amplitudes Af /R = 0.0266, 0.0133, 0.0066 and 0.0033 shown in figure 2, the
parameter ε (12) is, respectively, ε = 0.356, 0.282, 0.224 and 0.177. The damping ratio
for the lowest asymmetric mode of wavenumber k1R = 1.841 is given by (6) in the
form δ = C1(ν

2/R3g)1/4 with C1 ≈ 1. Using this value of δ, the damping parameter is
α = 2δ/ε2 ≈ 0.061, 0.098, 0.155 and 0.248, respectively, for the four forcing amplitudes
and water (for alcohol, the α values are about 20 % larger). These values of the
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Figure 3. Comparisons of the experimental amplitude response of planar waves and swirl
wave in a cylindrical container and the response curves determined by the multimodal
analysis of Faltinsen et al. (2003) for a square-base container of base L, and Af /L = 0.008
(Af /λ= 0.004). In the experiments, the excitation amplitude is Af /R = 0.0133 (Af /λ= 0.0039).
�, experimental planar wave mode; �, experimental swirling mode determined by increasing
(starting from ω/ω1 < 1) and decreasing the excitation frequency (starting from ω/ω1 > 1).
—, stable and −.−, unstable branches of Faltinsen et al. (2003). P = plane waves, S =swirl,
C = Chaos. B , F and T are the bifurcation points.

damping parameters are indicative of small damping where the resonance curves are
qualitatively similar, exhibiting at least four bifurcation points.

Above the natural frequency, ω/ω1 > 1, when for a given forcing amplitude the
forcing frequency is slowly decreased by small decrements, the planar wave amplitude
increases (soft spring behaviour) until a critical frequency is reached at which the
motion bifurcates to a swirling wave; this bifurcation point is denoted as β4 by Miles
(1984b) and corresponds to point B in figure 3 for a square-base container. The
same bifurcation to a swirling wave mode is obtained when the forcing frequency
is fixed and the forcing amplitude is increased by a small increment. The stability
boundary is, therefore, well defined. This stability boundary agrees with that obtained
by Abramson et al. (1966), indicated in figure 2 by the right-hand branch of the dotted
line. However, Abramson et al. do not give the stable swirl wave curve and indicate a
swirl wave where chaos exists. At a frequency near to ω/ω1 = 1, the swirl wave mode
bifurcates to chaos via a limit cycle and period doubling (Funakoshi & Inoue 1988)
at the Hopf bifurcation point denoted β2 by Miles (1984b) (corresponding to point
F in figure 3). The accuracy of the results as presented in figure 2 is about 1 % in
ω/ω1, which is insufficient for analysing this Hopf bifurcation. It would have required
special focus on this point, but this was not the purpose of the present experiments.

When starting at ω/ω1 < 1 and then increasing the forcing frequency by small
increments, the planar wave amplitude for a given forcing amplitude increases with
frequency until the wave amplitude reaches a turning point (point β3 corresponding
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to point T in figure 3) and grows rapidly until wave breaking occurs. This regime
is referred to as chaos (Miles 1984b; Faltinsen et al. 2003, see figure 3). The chaos
regime overlaps with what was classified as swirl by Abramson at al. (1966). The
upper horizontal line in figure 2 is the limit where the wave amplitude is such that the
downward acceleration bω2 is equal to gravity. As will be discussed in § 5, breaking
requires that the downward acceleration be equal to or larger than gravity (Taylor
1953). However, chaotic sloshing can occur without breaking, that is, without reaching
amplitudes such that the downward wave crest acceleration is equal to gravity.

Although the geometry is different, it is of interest to compare the present results
obtained in a circular cylindrical container with the solutions of the modal equations
for a square-base container presented in Faltinsen et al. (2003). One forcing ampli-
tude, namely Af /R = 0.0133 is close to their forcing amplitude Af /L = 0.008, where L

is the base dimension. When made dimensionless by the primary mode wavelengths λ
(λ= 3.411R and λ= 2L, respectively) the dimensionless forcing amplitudes are close.
Figure 3 shows that there is qualitative agreement between the experimental results
obtained in a circular cylinder and the modal results obtained for a square-base
container (the square-like wave branch which exists in a square-base container is not
shown). It would have been desirable to compare the experimental results with the
modal model solutions of Gavrilyuk et al. (2000) who obtained the response curves
associated with the lowest modes for a circular cylinder. Effects of higher modes were
not accounted for, so that the results are not really representative of experiments.
Contributions of higher modes to swirling are considerable and many details on that
are elaborated by Faltinsen et al. (2006).

A better representation of the bounds of steady-state wave motion is to plot the
dimensionless forcing amplitude Af /R as a function of ω/ω1. This is shown in figure 4,
the symbols are the same as in figure 2. The relation between Af /R and ω/ω1 is given
by the frequency-offset parameter β and the bounds are given by the specific values
of β2, β3, β4, β5 or β6 determined by Miles (1984b). For α2 � 1, the bifurcation point
β1 does not exist and β2 = −0.36. The other bifurcation points are to leading order
(higher-order terms are in α2 and amount to less than 2 % of the leading-order terms)
β3 = −1.55, β4 = 0.735, β5 = 0.108/α2 (β6 = 0.717). In figure 4, the lines corresponding
to these bifurcation points are indicated. These lines are given by:

Af

R
=

1

1.684

[
(ω/ω1)

2 − 1

βi

]3/2

, (18)

where i =2, 3, 4, 5, 6.

4.2. Steady-state planar waves

The amplitude of steady-state planar waves, made dimensionless by the forcing
amplitude Af , is plotted in figure 5. The large dispersion in measured wave amplitudes
is partly due to the relatively small values of wave amplitudes, particularly when the
forcing amplitude is small and the frequency offset parameter is large. The error in
wave amplitude, measured with the capacitance probes, is generally ±0.2 mm. The time
after initiation of the forcing when the steady-state amplitude is determined, introduces
a further error. Theoretically, t/T must go to infinity, but, in practice, the measurement
is validated when t/T = 100. Furthermore, secondary modes become increasingly
important when the wave amplitude is small and this introduce fluctuations. Fourier
analysis of the signal showed that the energy in the secondary modes of frequency 2ω1

is of the same order as the energy of the dominant mode when the wave amplitude
b < 8 mm. At larger wave amplitudes, the energy of the primary mode is an order of
magnitude larger.
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Figure 6. Images of a swirling wave in circular cylinder of radius R = 150mm partially filled
with water. Views are in the direction normal to the tank motion. The time between two images
is 67 ms. The ten images represent slightly more than one wave period T =2π/ω =570 ms.
h/R ≈ 1.2, ω/ω1 ≈ 1.02, Af /R =0.023.

Linear oscillators would suggest that b/Af =C1(K
2/|1 − K2|) where K = ω/ω1.

Although for ω/ω1 < 1 the data would collapse reasonably well by this scaling, this is
not the case for ω/ω1 > 1. The weakly nonlinear theory of Miles (1984b) predicts the
asymmetry shown in figure 5. The planar wave-amplitude response curves terminate at
the fixed points β3 = −1.55, and β4 = 0.735, giving, respectively, ω/ω1 = (−1.55ε2+1)1/2

and ω/ω1 = (0.735ε2 +1)1/2. For the smallest excitation amplitude Af /R = 0.0033, the
corresponding values ω/ω1 are 0.976 and 1.011.

4.3. Robustness of the swirling wave

The swirling wave motion, also referred to as rotary sloshing by Ibrahim (2005), is
very robust. Figure 6 shows images of a large-amplitude (b > 0.16λ) swirling wave
taken at 67 ms intervals which corresponds to 0.12 wave periods. There are fairly large
disturbances in the vicinity of the (flat-top) wave crest (local breaking), but the wave
remains stable. Nonlinear waves can transfer angular momentum to the whole liquid
column that starts to rotate (Faller 2001). The result is a Doppler shift, causing the
wave frequency to increase with respect to the forcing frequency. This Doppler shift
is clearly demonstrated by figure 7(a), where the swirl wave amplitude is plotted as a
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Figure 7. (a) Dependency of wave amplitude on forcing frequency. The tank radius is
R = 150mm filled with water to h/R ≈ 1.5. �, plane wave; �, swirling wave for Af /R = 0.023;
✩, ✷, Af /R = 0.045; (b) variation of phase lag of the swirling wave.

function of forcing frequency. Once the swirl is established, it can be maintained up
to fairly large forcing frequencies, here up to ω/ω1 ≈ 1.3, when the forcing frequency
is increased by small increments. This value is larger than that observed by Faller
(1983). When the forcing frequency is further increased by a small amount, the swirl
wave suddenly collapses and the motion switches to a small-amplitude out-of-phase
planar wave motion. In the weakly nonlinear theory, the non-planar resonance curve
terminates at the fixed points β2 = −0.36, and β5 = 0.108/α2 (or β6). For Af /R =0.023
and a dissipation coefficient α ≈ 0.06, the fixed point β5 is at ω/ω1 ≈ 2 and β6 at
ω/ω1 ≈ 1.045, which do not agree with the experimental value. The Hopf bifurcation
point β2 is at ω/ω1 = 0.979. This would correspond to the experimental value, but
the precise behaviour at β2 is not resolved in the present experiments because we did
not give special attention to this point. Funakoshi & Inoue (1988) investigated this
bifurcation point in great detail.

The swirling wave is initially nearly in phase with the forcing and as the forcing
frequency is increased the phase lag increases up to a maximum of −π/2 (figure 7b).
This phase lag was determined by correlating the output of the optical probe,
measuring the container displacement, with the signal of the capacitance probe located
at P1. Ibrahim (2005) mentions a phase angle of 90 ◦ for the swirling wave, referring
to Abramson et al. (1966). However, this phase lag is only observed just before the
collapse of the swirling mode. Figure 7(a) indicates two distinct dependencies of
the swirl wave amplitude on forcing frequency for fixed forcing amplitude. In the
range of 1 <ω/ω1 � 1.08, the wave amplitude increases nearly linearly with forcing
frequency as predicted by the multimodal theory (see figure 3). For ω/ω1 > 1.08 and
up to collapse, the wave amplitude exhibits only a small increase from b/λ≈ 0.26
to about 0.30. There is continuous local wave breaking near the wave crest, but as
long as the forcing frequency, remains below the collapse frequency, the swirl wave
is maintained. In the experiment corresponding to figure 7, the wave speed near
the container boundary before collapse is Vθ = ωR = 212 cm s−1, indicating a Doppler
shift consistent with a fluid velocity of about 10 % of Vθ . Faller (2001) measured the
fluid rotation generated by a large-amplitude swirling wave motion forced by a rotary
oscillation (rotillation) of the container and reports a fluid azimuthal velocity of up to
25 % of the wave speed. The dimensionless amplitude of the wave in his experiments
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(b) ω = 1.17ω1. T1 = 2π/ω1 = 413, T = T1/K and bc = 1.841/R. The liquid is water, ν = 0.01 cm2

s−1, R = 78 mm and h/R ≈ 1.5. K = ω/ω1.

is of the same order as in the present experiments. Faller mentions that wave breaking
(spilling at wave crest) produces a turbulent wave motion and this favours the transfer
of wave angular momentum to the fluid angular momentum, as was proposed by
Prandtl (1949). The larger fluid azimuthal velocity in Faller’s experiments may be due
to the rotary forcing that imposes a swirling wave at all amplitudes.

5. Transient regimes
5.1. Transition to steady-state planar mode

When starting to force the container at a frequency ω = Kω1 with K �= 1, the wave
motion behaves like a damped oscillator with the superposition of two frequencies,
namely ω and ω1. Figures 8(a) and 8(b) show the wave amplitudes as a function
of time for K = 0.86 and K =1.17, respectively, measured near the container wall
at θ = 0 ◦ (position P1). The dimensionless forcing amplitude is Af /R = 0.045. As
expected, a strong beating is observed at a frequency |ω1 − ω|. Fourier analysis of the
signal (not shown here) at regular time intervals exhibits the time evolution of the
energy contained in the three different frequencies, namely the forcing and natural
frequencies and the difference between the two. The Fourier analysis further shows
that the second resonance mode of frequency ω12 is also present, but its energy is
negligibly small. Because of the relatively large forcing amplitude, higher harmonics
are practically absent. As expected, the amplitude of the natural frequency oscillation
decays exponentially and is negligible after about 100 periods. The measured damping
rate κ is close to 0.06 rad s−1. For R = 78 mm the frequency is ω1 = 15.2 rad s−1, giving
δ = κ/ω1 = 0.0039. Thus, the coefficient C1 ≈ 1 in δ =C1ν

1/2R−3/4g−1/4.
Royon-Lebeaud (2005) also determined the damping rate by stopping the forcing

after the steady-state planar wave was established and measured the wave amplitude
as a function of time. The measurements were stopped when the amplitude fell below
0.2 cm. The constant C1 in (6) was generally larger than 1 (C1 ≈ 1.3) with a fairly
large scatter. When the forcing is stopped, the steady-state wave amplitude jumps
within two to three periods to a larger or lower value depending on whether the
forcing frequency is, respectively, larger or lower than the natural frequency. The
wave frequency of the planar waves switches to the natural frequency conserving
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by increasing the forcing amplitude Af /R and then decreasing it, keeping the forcing frequency
constant at ω/ω1 = 1.07; h/R = 1.6, R = 78 mm.

the ratio of kinetic to potential energy in the form (bω)2/gb = (b1ω1)
2/gb1, giving

b1 = b(ω/ω1)
2, where b1 is the wave amplitude at ω1.

5.2. Transition from steady-state planar waves to swirl

When starting at ω >ω1 and then approaching resonance by decreasing the forcing
frequency in small steps, the out-of-phase planar wave bifurcates to a swirling mode
that is practically in phase with the container motion. Here we consider the transition
from planar wave motion to a swirl wave at fixed forcing frequency by increasing the
forcing amplitude. The bifurcation diagram is shown in figure 9 where the ratio of the
amplitudes of swirl wave to planar wave is plotted as a function of forcing amplitude.
Initially, at small values of Af /R, the movement is a planar wave mode. When Af /R

reaches a critical value, which depends on forcing frequency, here fixed, a bifurcation
to a swirling mode takes place; its amplitude increases exponentially (figure 10). This
bifurcation corresponds to β4 in Miles’ (1984b) notation. For α � 1, β4 = 0.735, which
gives at the bifurcation point Af /R =0.028 a frequency ratio ω/ω1 = 1.047 that is
somewhat less than the experimental value 1.07. Figure 9 shows that when the swirl
wave is established, in a time of about 60 periods, it is very robust. It persists not only
up to large forcing amplitudes which is expected according to figure 2, but also down
to fairly small forcing amplitudes which is not obvious. This large hysteresis might be
favoured by fluid rotation. However, at the wave amplitudes in question (b/λ� 0.18)
the fluid rotation is weak. Furthermore, the time interval between each step in forcing
amplitude is about 103 wave periods which would allow the fluid rotation to spin
down; the spin-down time τs = h/(νΩ)1/2 is about 200 wave periods. The planar wave
mode is recovered when Af /R � 0.006 and the swirl wave amplitudes at positions
P1 and P2 are equal just before collapse of the swirl; the swirl wave amplitude
has decreased from 4.2 cm (b/R = 0.538) to 3.2 cm. This bifurcation diagram would
indicate a subcritical bifurcation. However, it is not possible to increase the wave
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Figure 10. Temporal evolution of planar and swirl wave amplitudes. The upper part of
the figure represents the amplitudes measured by each probe: —, probe at P 2; . . . , probe
at P 1. The lower part shows the imposed variation in forcing amplitude, right-hand
scale Af /2R. Cylindrical container R = 78mm filled with water to h/R = 1.5, ω/ω1 = 1.07.
T = 2π/ω =385 ms.

amplitude sufficiently for the bifurcation to a swirl wave to take place at a forcing
amplitude below the critical value β4.

Figure 10 shows the temporal evolution of the wave amplitudes measured at
P1 and P2. When the forcing amplitude is just below the critical amplitude (here
made dimensionless by d = 2R) which is Af /2R = 0.014 for ω/ω1 = 1.07, the surface
displacement measured by the probe located at P2 is practically zero; there is only
planar wave motion. A slight increase in Af causes the motion to bifurcate to a swirl
wave with an exponential growth in wave amplitude. A step reduction in forcing
amplitude to Af /2R = 0.0035 causes the swirl wave amplitude to decay in a time of
about 100 to 150 wave periods.

The low-frequency fluctuations in the capacitance probe signal shown in figure 10
are actual fluctuations of the free-surface elevations owing to capillary waves and
perhaps harmonics. These can be ±5 mm during transients. The spikes in the signal
are electronic noise. These spikes could have been eliminated by low-pass filtering,
but this was not done because it does not alter the results.

6. Chaotic sloshing and wave breaking
6.1. Chaotic sloshing and breaking conditions

Chaotic sloshing occurs between bounds 2 and 3 indicated in figure 4. The frequency
range where chaotic sloshing takes place depends on the forcing amplitude, expressed
by the frequency-offset parameter β . When the experiments are started at forcing
frequencies below resonance and steady-state planar wave motion is established, a
small increase in forcing frequency leads to a rapid increase in wave amplitude if
the turning point is crossed. Rapid increase in wave amplitude and wave breaking
occurs in a similar way in the whole range β3 <β <β2 except near β2 where chaos is
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Figure 11. (a) Time evolution of dimensionless wave amplitude b/bc versus dimensionless
time. (b) Corresponding phase lag φ (rad). The forcing amplitude (left-hand scale in a) is
Af /R = 0.022, R =150 mm, h/R =1.5. Up to t/T = 10, the forcing amplitude was ω/ω1 = 0.89,
then it was increased to ω/ω1 = 0.92. T = 2π/ω = 622 and 640 ms, bc = 0.54R.

possible without breaking. The growth in wave amplitude near β3 and wave breaking
is illustrated in figure 11(a) where the surface displacement as a function of time,
measured with the capacitance probe located 1.3 cm (0.08R) from the container wall
at point P1, is shown. The surface displacement is made dimensionless by bc and
time by the forcing period T =2π/ω (calculated with ω =0.89ω1). The scale on the
left-hand side is the container displacement x/R. Up to t/T =10 (the experiments
were of course started well before so that the free oscillations had time to decay), the
forcing frequency was kept constant at ω/ω1 = 0.89 and the motion is seen to consist
of steady-state planar waves in phase with the container motion. Then the forcing
frequency was increased to ω/ω1 = 0.92 leading to a growth in wave amplitude. The
dimensionless frequency corresponding to the fixed point β3 = −1.52 is ω/ω1 = 0.911.
It is seen in figure 11(a) that as the wave amplitude grows, the motion becomes more
and more asymmetric with the positive maximum surface displacements reaching
nearly twice the negative displacements. The motion is initially in phase with the
forcing, but then the phase lag increases with wave amplitude (figure 11b). When
b > bc, the phase lag increases rapidly to −π/2 and is −π at collapse. After breaking
of the planar wave, an irregular swirl is generated and when the irregular sloshing
motion has sufficiently decayed, the planar wave grows again in amplitude until
breaking. This behaviour occurs quasi-periodically.

Figure 12(a) shows the dimensionless surface elevation at P1, η(R, 0, t)/bc versus
dimensionless time for ω/ω1 = 0.98, that is close to β2, and Af /R =0.0033. Initially,
the sloshing consists of planar wave motion of temporal growth in wave amplitude.
Near maximum wave amplitude, here b ≈ 0.6bc, the surface elevation at P2 starts
to grow rapidly and the amplitude at P1 decreases. The following motion is chaotic
with irregularly varying surface displacements at P1 and P2 indicating irregular
non-planar motion. This is chaos without actual wave breaking (bω2 <g). At time
marked t1, the motion is again regular with a temporal growth of the planar wave
amplitude up to t2 where the amplitude at P2 starts to grow again; the amplitude at
P2 is maximum at t3 and the amplitude at P1 is at a minimum. This is indicative
of irregular non-planar wave motion. The growth and collapse of the planar wave
motion is seen to be quasi-periodic, of period (t4 − t1) ≈ 120T .
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Figure 12. Time evolution of wave amplitudes at P1 (θ = 0◦) and P2 (θ = 90◦) in circular con-
tainer of R = 78 mm filled with water to h/R ≈ 1.5, ω/ω1 = 0.98, T = 421 ms. (a) Af /R = 0.0033;
(b) Af /R = 0.021.

The time evolution of wave amplitude shown in figure 12(a) is similar, but
different in detail, to that measured by Funakoshi & Inoue (1988) at 0◦ and 90 ◦

for Tr = (T − T1)/T1 = 0.0196, that corresponds to ω/ω1 = 0.981 (ω/ω1 = 1/(Tr + 1)),
and Af /R = 0.0055. The extreme sensitivity to forcing amplitude at this forcing
frequency is apparent when comparing the time evolution measured by Funakoshi
& Inoue with that shown in figure 12(a) for Af /R = 0.0033. This dependency on
Af /R is clearly seen when for the same forcing frequency the forcing amplitude is
increased by a factor of about 7 to Af /R = 0.021 (figure 12b). The wave amplitude at
breaking is in this case much larger (b >bc) and the quasi-periodicity of the bursts of
alternating planar wave motion and swirl decreases substantially to a burst period of
about 20T . Unfortunately, the wave amplitude measured with the probe located at P1
(figure 12b) saturates at about b/bc ≈ 1. This saturation or cutoff occurred because
the capacitance probe at P1 was too deep in the water. This does not, however, alter
the burst frequency; the actual maximum amplitude is close to b/bc ≈ 1.6 as measured
by the probe located at P2. When comparing the signals at P1 and P2, it can be
seen that there is regular swirl when the wave amplitude has reached a maximum.
With increasing excitation amplitude, the regularity of the swirl increases, that is to
say, when the amplitude at P2 grows, its correlation with the amplitude measured
at P1 increases (taking into account the azimuthal rotation of π/2 between the two
signals).

Figure 13(a) shows the burst frequency and figure 13(b) the percentage of regular
swirl as a function of dimensionless excitation amplitude Af /2R. The burst frequency
has been determined from a spectral analysis of the envelope fitted through the
wave amplitudes of the capacitance probe signal located at P2. The percentage
of regular swirl has been obtained from the correlation between the capacitance
probes located at P1 and P2, taking into account the π/2 azimuthal rotation.
For forcing amplitudes Af /2R < 0.0015 there is no regular swirling mode and no
burst frequency can be determined. For conditions corresponding to figure 12(a)
(Af /2R = 0.0016) there is a clear burst frequency, but practically no regular swirl.
In the range 0.0015 � Af /2R � 0.013, the burst frequency increases slowly and the
fraction of regular swirling wave mode increases rapidly from 0 to about 80 %. For
forcing amplitudes Af /2R = 0.025, a steady swirl wave regime is approached. When
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the forcing amplitude is decreased, regular swirl is maintained down to Af /2R > 0.013
and then there is a more rapid decrease in regular swirl. Note that this behaviour is
observed for ω/ω1 = 0.98. At this frequency, when the forcing amplitude is increased,
the bifurcation point β2 shifts to smaller values of ω/ω1 (figures 2 and 4); for
Af /R = 0.05, the bifurcation point β2 is at ω/ω1 = 0.96, whereas for Af /R = 0.0033
it is at ω/ω1 = 0.996. Therefore, at small forcing amplitudes, the value ω/ω1 = 0.98 is
in the chaotic regime, and at larger forcing amplitudes, the chaos/swirl bifurcation
point is crossed completely. At intermediate forcing amplitudes, the motion switches
between chaos and regular swirl in a quasi-periodic manner.

In the chaotic regime, the wave amplitude grows, to first approximation, linearly in
time (figure 11) and is nearly proportional to forcing amplitude in the form

b

R
≈ C2π

(
Af

R

)n
t

T
. (19)

Linear oscillator theory suggests n= 1. Taking this value of n, the constant C2 = 0.3 to
1.5 depending on initial conditions. In general, the growth rate was found to be larger
when the wave amplitude in the chaotic regime grows from rest, whereas in the case of
an established planar wave motion with a following small forcing frequency increase
to the chaotic regime, as shown in figure 11, the growth rate is less. Miles’ theory
would suggest n= 2/3 giving d(b/R)/dτ = 0.70C2, where τ is the slow dimensionless
time scale τ = (ε2ω t)/2. For large wave amplitudes, the weakly nonlinear theory is no
longer valid and the exponent may deviate from n= 2/3.

Figure 14 shows the complexity of the motion at breaking; images are taken at
60 ms time interval. These images were taken in the container of R = 150 mm at
ω/ω1 = 0.98 and Af /R = 0.022 corresponding closely to conditions of figure 12(b).
The natural wave period is 580 ms. The motion is viewed in the direction of the
container motion. In figure 14(a) breaking begins and as the wave crest retreats,
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Figure 14. Wave breaking viewed in the direction of the container motion in container of
R = 150 mm for ω/ω1 = 0.98 and Af /R = 0.023. The time interval between images is 60 ms and
T = 580 ms. The sequence of images is from left to right and top to bottom.

ligaments are left behind (figure 14c, d). The wave crest moving up in figure 14(e–j )
is on the opposite face (front wall) of the container and has its maximum in fig-
ure 14(f ) that is half a period later. Then, the motion is more and more asymmetric
and a swirling wave motion is initiated (figure 14k, l). An important point to notice
is the height of the wave crest that is much larger than bc. However, the liquid mass
that is projected upward to a height ≈ 1.7bc is composed of a layer of approximate
thickness 0.1R. Capillary effects are clearly visible at the edges of this layer (bulge
formation) indicating that this liquid mass is under nearly free-fall conditions.

6.2. Breaking scenarios

In the whole chaotic regime, wave breaking and collapse is similar to the images
shown in figure 14 except that further away from the swirl wave boundary there is
less or no regular swirl generated when the planar wave motion collapses. In fig-
ure 14(a–c), it can be seen that the wave crest is crosswise destabilized with wavelength
equal to the layer width (equal to about R). The crest has two maxima at the edges
of the layer and then, a period later (figure 14k, l), the pattern is repeated, but is less
regular. Therefore, the frequency of this cross-wave can be considered to be equal
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Figure 15. (a) Sloshing motion viewed perpendicular to the container motion at successive
periods. For each period, three images with increasing wave amplitude are shown (b), view
in the direction of container motion. Cylindrical container of R = 78 mm, filled with water
to h/R = 1.5. The forcing frequency and forcing amplitude are, respectively, ω/ω1 = 0.96 and
Af /R = 0.022. The wave period is T = 430 ms.

to twice the primary frequency ω1. In § 6.3, where wave breaking in a square-base
container is discussed, cross-waves of twice the primary wave frequency are indeed
observed, but other scenarios are also possible.

Before the violent wave destabilization (collapse) illustrated in figures 14 and 11,
spilling occurs. This is shown in figure 15(a) where the motion is viewed perpendicular
to the container motion and in figure 15(b) aligned with the container motion. The
two views are, unfortunately, not simultaneous. In figure 15(a) the wave amplitude
is shown at five successive periods, starting at b ≈ 1.2bc (period 1) until the wave
crest reaches about 1.8bc and spilling occurs (periods 4 and 5). For each period,
three images are shown with the wave amplitude increasing from left to right in each
row. Figure 15(b) corresponds roughly to the maximum wave amplitude (right-hand
column of figure 15a) viewed from right to left (in the direction of container motion).
The images were taken in the container of R =78 mm at forcing frequency and forcing
amplitude respectively ω/ω1 = 0.96 and Af /R = 0.022.
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The mechanism of spilling is analogous to that beautifully demonstrated by Jiang
et al. (1998) for two-dimensional wave breaking. The relatively thin fluid layer (of
thickness ≈ 0.1R) that, by inertia, is thrown up to a height larger than bc, moves
down by nearly free fall and impinges on the upward moving wave crest during
the next oscillation. When the fluid layer falls from a sufficient height, it creates a
shoulder on the wave crest that causes the spilling (figure 15a, period 4). Bredmose
et al. (2003) called this wave crest a table-top crest. Their experiments, conducted
in a rectangular tank of length to width ratio equal to 3.7, subjected to horizontal
forcing, showed the existence of these table-top breakers with long periods of free
fall. In the present experiments spilling is not uniform across the wave crest (width
of the layer); it is concentrated at the centre and a ligament emerges which breaks
up into drops. In two dimensions, the spilling causes sufficient damping that during
the next period, the wave amplitude is reduced and the cycle starts again. Jiang et al.
called it period tripling. In three dimensions, the transverse or crosswise perturbations
on the wave crest grow (it starts in image 5 of figure 15b) and only after two to
three periods is there complete collapse of the wave motion (figures 14 and 11). If
the forcing of the container is maintained, the planar wave will start to grow again
after a few periods when the irregular sloshing motion has been sufficiently damped.
The growth–collapse cycle is quasi-periodic, with the period depending on ω/ω1 and
Af /R (figure 12).

7. Wave breaking in a square-base container
7.1. Breaking conditions

In a square-base container, the span of the wave crest is limited by the sidewalls
and is equal to half the primary wavelength. This corresponds to the case mentioned
by Taylor (1953) where large-amplitude two-dimensional wave motion is nearly
impossible when the standing wave crest is free in the direction of the primary wave
motion. In a square-base container, a wall replaces the symmetry plane and stabilizes
the wave crest in the direction of the primary wave motion. The container used
has a square base of L =28 cm and a depth of 50 cm filled with water or alcohol
to h/L ≈ 1. The forcing amplitude was always Af /L = 0.0125. The dimensionless
wavenumber is kijL = π

√
i2 + j 2 (Faltinsen et al. 2003) with natural frequency

of the primary, asymmetric modes ω10(πg/L)1/2 = 10.48 rad s−1 (ω10 = ω01 ≡ ω1) and
wavelength λ= 2L. The wave amplitude bc at which the downward wave acceleration
bω2 = g and the wave crest begins to break is bc = L/π =0.16λ (taking ω = ω1). This
value would be obtained if the wave crest were pointed. Since in reality the wave
crest for wave amplitudes b � bc is not pointed and is closely approximated by the
Penney & Price (1952) relation, the downward acceleration is already equal to g when
b/λ= 0.14. Taylor argued that a fluid particle which rises above b/λ= 0.141 might
experience a downward acceleration larger than g during a small instant of time. He
found stable wave motion up to b/λ= 0.14 with a slight sign of perturbations along
the wave crest (crosswise) already beginning at b/λ≈ 0.12.

Figure 16 shows images of crosswise destabilization of the wave crest in the square-
base container. In figure 16(a), the temporal growth of this instability is shown during
six periods. In figure 16(b), the different cross-wave patterns that can be observed
are shown. In figure 16(a) there is an onset of a short wavelength instability when
b ≈ bc (figure 16(a)(i)). This instability is compatible with a Rayleigh–Taylor instability
assuming a downward acceleration of about 1.1 g. This instability is, however, not
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Figure 16. Front view of lateral wave profiles in the square-base container. (a) Temporal
evolution of the crosswise instability of the wave crest; λRT indicates short-wave instability
and λF long-wave instability. The fluid is water. (b) the four different wave pattern observed.
In (b), the liquid is alcohol, but patterns are the same as in water; ω/ω1 = 0.92, Af /L =0.0125.

amplified further because the downward acceleration is hardly ever larger than about
1.1g and lasts only over a small fraction of the wave period. Measurements showed
that at b = 0.14λ, the downward acceleration is practically equal to g and when
b = 0.24λ (figure 16(a)(iv)) a downward acceleration between g and 1.2 g may exist
depending on transverse position. Capillary effects are evaluated to about 0.03 g for
water.

In figure 16(a) the short wavelength instability (Rayleigh–Taylor instability) is
rapidly replaced by instability of wavelength L/2 that grows and starts to form
conically shaped fluid masses in the centre and at the sidewalls. A ligament emerges
from the central conical fluid mass. In figure 16(b) three other cross-wave patterns
are shown. The pattern in figure 16(b)(ii) is the counterpart of figure 16(b)(i) with
two crests located at L/4 from the sidewalls. Figures 2(b)(iii) and 2(b)(iv) have a
wavelength qual to L.

The scenario of wave breaking in a square-base container (figure 17) is very similar
to that observed in a cylindrical container (figure 15) except that the crosswise
instability of the wave crest is more pronounced. The lumps of fluid above bc (fig-
ure 17b) fall freely and impinge on the upward moving wave front during the next
oscillation (figure e, f ) producing some splashing (figure 17f ). As the wave front
moves up, a shoulder forms (figure 17i) which causes spilling. In figure 17, the cross-
wave wavelength is L/2 and the frequency is likely to be twice the primary frequency
because there is a peak in the centre on one face (figure 16(b)(i)) and again a peak
on the opposite wall (figure 17f, g). There is a downward central peak at the wave
trough (figure 17e) half a period later that would indicate that the cross-wave is in
phase with ω1. The reason for this is most likely the free fall of the fluid lumps that
causes the downward central gas entrainment; in figure 17(f ), the pattern starts to
reverse. It was not possible to follow the complete evolution of the cross-wave pattern
on one face only to determine without ambiguity its frequency. The scenario shown
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(b) (c)(a)

(d)

Bc

B0

(g) (h) (i)

(e) ( f )

Figure 17. Simultaneous front and side views of wave breaking in the square-base container
for ω/ω11 = 0.97, Af /L = 0.0125. The fluid is alcohol and the images are taken at a time
interval of 66 ms. The wave period is T = 2π/ω = 617ms. The observed pattern corresponds to
figure 16(b)(i) for which the cross-wave frequency was evaluated as ω = 2ω1.

in figure 17 persists for about three to four periods and then the whole wave motion
collapses in a way similar to figure 11 because the symmetry is lost and a non-planar
irregular motion is generated. Then, the plane wave amplitude starts to grow again.
Measurements of the wave heights in a square-base container by Faltinsen et al.
(2003) demonstrate this growth–collapse cycle.

7.2. Analysis in terms of parametric instability

The observed cross-wave instability is most probably of parametric type. The wave
motion in the square-base container can be considered analogous to the wave motion
generated in a rectangular container of length 2L and width L vibrated vertically
at frequency ωp = 2ω1, except that in the square-base container, the symmetry plane
of the wave crest is replaced by a wall. The tuning and forcing parameters are,
respectively (Benjamin & Ursell 1954),

p =
4ω2

T

ω2
p

, q = 2bpkT tanh(kT h), (20)

where ωT and kT are, respectively, the cross-wave frequency and wavenumber.
The required vertical vibration amplitude bp is unknown. Waves of sub-harmonic
frequency ω1 = ωp/2 are known to be most unstable. The corresponding wavelength
λ=2L is the planar wave motion. However, in the crosswise direction, the wave
is bounded by the container width L. A larger forcing amplitude (large forcing
parameter) is required to amplify waves of shorter wavelengths (Miles & Henderson
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Face 1 Face 2 Wavelength Frequency

Pattern i Pattern i L/2 2ω1

Pattern i Pattern ii L/2 ω1

Pattern iii Pattern iv L 2ω1

Pattern iii, Pattern iii L 2ω1

then Pattern iv, then Pattern iv

Table 1. Likely frequency of the cross-wave patterns shown in figure 16(b).

1990), namely λT = L and λT = L/2 (figure 16). The corresponding values of the tuning
parameter are, respectively, p = 2 and p = 4.

The frequencies of the cross-wave patterns were determined from video images
and are given in table 1. In this table, the wave patterns referred to as patterns
i, ii, iii, and iv correspond to the images (i), (ii), (iii) and (iv) of figure 16(b). The
back and front walls at which the wave crests run up successively are, respectively,
referred to as face 1 and face 2. The synchronous behaviour ωT = 2ω1 is compatible
with classical parametric instability when the tuning parameter p = 4, (20). This
wavelength corresponds also to the secondary mode 2ω1 which is amplified by the
quadratic terms of the primary modes, (11). The wavelengths L of rows 3 and 4 of
table 1, would correspond to p = 2 if the frequency were ωT =

√
2ω1. In a square-base

container this frequency corresponds to the second natural frequency ω20 =
√

2ω1.
It is possible that there is an interaction between the primary modes of ω1 and
secondary modes of 2ω1 that allow the wavelength L to exist. The behaviour of row
2 is unexplained.

8. Conclusions
The aims of the experiments on sloshing in circular and square-base cylindrical

containers of primary natural frequency ω1, subjected to harmonic horizontal forcing
of frequencies near ω1 and forcing amplitude Af , were twofold: (i) to determine the
bounds of existence of the different wave regimes and (ii), to clarify the transients from
planar waves to swirl wave and from planar and swirl waves to chaos including wave
breaking. Only large fluid depth, h/R > 1, was considered such that the amplitude–
frequency response is independent of fluid depth. The liquids used (water and alcohol)
were low-viscosity liquids and satisfy the conditions of small damping, α2 � 1. Because
of deep-water conditions, the nonlinearity of planar wave resonance is negative (Miles
1984a) with the boundary of transition from steady-state planar waves to chaos and
wave breaking depending critically on excitation amplitude. The non-planar wave
mode (swirl) is situated near and above the natural frequency. Its bounds have been
clarified and compared with Miles’ (1984b) weakly non-linear theory. The amplitude
response of planar waves is in good agreement with Miles’ theory. When ω >ω1,
planar waves bifurcate to a swirl wave at a finite wave amplitude, the value of
which depends on forcing amplitude and frequency. The swirl wave amplitude grows
exponentially and saturates at a certain value. The swirl wave response has a hard-
spring behaviour, is very robust and generates a vortical flow of the fluid column
which, by the Doppler shift, allows the swirling wave to remain stable up to relatively
large excitation frequencies. At collapse of the swirl, the phase lag is close to −π/2,
followed by planar out-of-phase wave motion. When ω < ω1, planar waves bifurcate to
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chaotic sloshing if, for a given forcing amplitude, the dimensionless forcing frequency
ω/ω1 is increased beyond the stability bound (turning point). The temporal increase
in wave amplitude of these resonant waves depends strongly on forcing amplitude.
These waves remain stable up to an amplitude of b/R ∼= 0.54 where the downward
wave crest acceleration is equal to or slightly larger than gravity. Beyond this wave
amplitude, a liquid layer is projected up the wall. Depending on forcing amplitude
and forcing frequency, the maximum height reached by the leading edge of this
layer is nearly twice the stable wave amplitude. Wave breaking and following wave
motion collapse with irregular non-planar sloshing, limits the maximum height. As
the wave amplitude grows, the phase lag increases and is about −π at collapse of the
wave motion. Near the bifurcation point β2, that is, in close vicinity of the natural
frequency, chaotic wave motion exists without wave breaking (see figure 12a).

Chaotic wave motions and wave breaking occur quasi-periodically, starting with
the growth of planar wave amplitude followed, generally by breaking (except near β2)
and irregular sloshing. Then, after sufficient damping of the irregular sloshing motion,
the amplitude of planar wave motion grows again. The maximum amplitude reached
before collapse and the periodicity of the growth–collapse–irregular swirl–growth
depend on forcing amplitude and forcing frequency. Breaking starts, in general, with
a pointed crest consisting of a layer that moves up the wall. This layer then moves
downward by nearly free fall and lags behind the wave motion so that it impinges on
the upward moving wavefront during the next oscillation. This causes spilling owing
to the encounter of this downward moving fluid layer with the upward moving wave
crest. This spilling process is repeated over two to three periods and then the resulting
strong perturbations cause the wave motion to collapse. The following fluid motion
is very irregular, probably turbulent, with strong (bulk) damping, allowing renewed
growth of planar wave motion. In two dimensions, the spilling process is similar,
as was demonstrated by Jiang et al. (1998), except that after one spilling event the
associated dissipation leads to a stable wave in the next cycle. This process was referred
to as period-tripled breaking. In three dimensions, because of the destabilization of
the wave crest in the crosswise direction, spilling is not uniform along the wave crest.
For this reason, free fall of fluid lumps and spilling can be repeated over a few wave
periods before perturbations become large enough to generate fully three-dimensional
motion (figure 14).

The complementary experiments conducted in the square-base container of base
dimension L, allowed the wave crest destabilization to be investigated in more detail.
Four different cross-wave patterns of wavelengths L and L/2 have been identified
with frequencies equal to ω1 and probably also 2ω1. This cross-wave instability is
interpreted in terms of parametric instability. The cross-wave instability can develop
into ligaments and drop ejection. The size of the drops depends on the surface tension
of the liquid, but the cross-wave pattern does not seem to be influenced by surface
tension.

The results obtained in two containers, which differ in size, by a factor of two are,
as expected, identical in dimensionless terms. Therefore, the up-scaling of the results
to large containers, encountered in application, is possible. It requires geometric
similarity as well as similarity of the frequency-offset parameter β composed of the
dimensionless forcing amplitude Af /R and dimensionless forcing frequency ω/ω1. For
the same value of β , the growth rates of the wave amplitude of planar and unstable
waves in the chaotic regime is practically linear in time and depends on forcing
amplitude (Af /R)n (19) with n ∼ 1. The liquid depth h/R is a further important
parameter unless conditions of deep-water waves are satisfied as in the present
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experiments. The fluid properties must satisfy the conditions of small damping, α2 � 1,
and small effects of surface tension (Bond number Bo = ρgR2/σ � 1). Surface tension
effects however, play, a role in the final stage of wave breaking (drop formation).
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oscillation harmonique Thèse de l’UJF, Grenoble (http://tel.ccsd.cnrs.fr).

Silverman, S. & Abramson, H. N. 1966 Damping of liquid motions and lateral sloshing. In The
Dynamic Behaviour of Liquids in Moving Container (ed. H. N. Abramson). NASA TR SP-106,
105–143.

Taylor, G. I. 1953 An experimental study of standing waves. Phil. Trans. R. Soc. 44–59.

Waterhouse, D. D. 1994 Resonant sloshing near a critical depth. J. Fluid Mech. 281, 313–318.


